Entropy – a measure of the unavailability of a system’s energy to do work; also a measure of disorder; the higher the entropy the greater the disorder.
When heat flows from a hot region to a cold region entropy increases, as heat is distributed throughout the system. The concept of entropy is central to the second law of thermodynamics. The second law determines which physical processes can occur. For example, it predicts that heat flows from high temperature to low temperature in spontaneous processes. The second law of thermodynamics can be stated as saying that the entropy of an isolated system always increases, and processes which increase entropy can occur spontaneously. Since entropy increases as uniformity increases, the second law says qualitatively that uniformity increases
Ice melting in a warm room is a common example of increasing entropy,
Yeah, but what if I put that iced drink in my fridge?
Locally, the entropy can be lowered by external action. This applies to machines, such as a refrigerator, where the entropy in the cold chamber is being reduced, and to living organisms. This local decrease in entropy is, however, only possible at the expense of an entropy increase in the surroundings.
If we knew exactly what animal life was like before the fall into sin and knew what nature was like before the law of entropy invaded it, we would already be living in heaven. Walter Lang
Just as the constant increase of entropy is the basic law of the universe, so it is the basic law of life to be ever more highly structured and to struggle against entropy. Vaclav Havel
Only entropy comes easy. Anton Chekhov
Scientists have often been baffled by the existence of spontaneous order in the universe. The laws of thermodynamics seem to dictate the opposite, that nature should inexorably degenerate toward a state of greater disorder, greater entropy. Yet all around us we see magnificent structures—galaxies, cells, ecosystems, human beings—that have all somehow managed to assemble themselves.”
The common argument used to explain this is that, locally, entropy can be lowered by external action, e.g. solar heating action, and that this applies to machines, such as a refrigerator.
The conditioner of this statement suffices that living systems are open systems in which both heat, mass, and or work may transfer into or out of the system. Unlike temperature, the putative entropy of a living system would drastically change if the organism were thermodynamically isolated. If an organism was in this type of “isolated” situation, its entropy would increase markedly as the once-living components of the organism decayed to an unrecognizable mass.
There are some hard to grasp meanings with Entropy, meanings directly contradicting their normal usage, with equilibrium being equated to "perfect internal disorder" and the mixing of milk in coffee from apparent chaos to uniformity being described as a transition from an ordered state into a disordered state.
Entropy? Is worth a study.
The common argument used to explain this is that, locally, entropy can be lowered by external action, e.g. solar heating action, and that this applies to machines, such as a refrigerator.
The conditioner of this statement suffices that living systems are open systems in which both heat, mass, and or work may transfer into or out of the system. Unlike temperature, the putative entropy of a living system would drastically change if the organism were thermodynamically isolated. If an organism was in this type of “isolated” situation, its entropy would increase markedly as the once-living components of the organism decayed to an unrecognizable mass.
There are some hard to grasp meanings with Entropy, meanings directly contradicting their normal usage, with equilibrium being equated to "perfect internal disorder" and the mixing of milk in coffee from apparent chaos to uniformity being described as a transition from an ordered state into a disordered state.
Entropy? Is worth a study.
No comments:
Post a Comment